查看mysql数据库索引(mysql 索引查询)

软件开发 15
本篇文章给大家谈谈查看mysql数据库索引,以及mysql 索引查询对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。 怎么查看mysql 索引的创建语句 Non_unique如果索引不能包括重复词,则为0。如果可以,则为1。· Key_name索引的名称。· Seq_in_index索引中的列序列号,从1开始。· Column_name

本篇文章给大家谈谈查看mysql数据库索引,以及mysql 索引查询对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

怎么查看mysql 索引的创建语句

Non_unique

如果索引不能包括重复词,则为0。如果可以,则为1。

· Key_name

索引的名称。

· Seq_in_index

索引中的列序列号,从1开始。

· Column_name

列名称。

· Collation

列以什么方式存储在索引中。在MySQL中,有值‘A’(升序)或NULL(无分类)。

怎么查看mysql数据库的引擎

一般情况下,mysql会默认提供多种存储引擎,你可以通过下面的查看:

看你的mysql现在已提供什么存储引擎:

mysql show engines;

看你的mysql当前默认的存储引擎:

mysql show variables like '%storage_engine%';

你要看某个表用了什么引擎(在显示结果里参数engine后面的就表示该表当前用的存储引擎):

mysql show create table 表名;

MySQL数据库引擎详解

作为Java程序员,MySQL数据库大家平时应该都没少使用吧,对MySQL数据库的引擎应该也有所了解,这篇文章就让我详细的说说MySQL数据库的Innodb和MyIASM两种引擎以及其索引结构。也来巩固一下自己对这块知识的掌握。

Innodb引擎

Innodb引擎提供了对数据库ACID事务的支持,并且实现了SQL标准的四种隔离级别,关于数据库事务与其隔离级别的内容请见数据库事务与其隔

离级别这篇文章。该引擎还提供了行级锁和外键约束,它的设计目标是处理大容量数据库系统,它本身其实就是基于MySQL后台的完整数据库系统,MySQL

运行时Innodb会在内存中建立缓冲池,用于缓冲数据和索引。但是该引擎不支持FULLTEXT类型的索引,而且它没有保存表的行数,当SELECT

COUNT(*) FROM

TABLE时需要扫描全表。当需要使用数据库事务时,该引擎当然是首选。由于锁的粒度更小,写操作不会锁定全表,所以在并发较高时,使用Innodb引擎

会提升效率。但是使用行级锁也不是绝对的,如果在执行一个SQL语句时MySQL不能确定要扫描的范围,InnoDB表同样会锁全表。

MyIASM引擎

MyIASM是MySQL默认的引擎,但是它没有提供对数据库事务的支持,也不支持行级锁和外键,因此当INSERT(插入)或UPDATE(更

新)数据时即写操作需要锁定整个表,效率便会低一些。不过和Innodb不同,MyIASM中存储了表的行数,于是SELECT COUNT(*)

FROM

TABLE时只需要直接读取已经保存好的值而不需要进行全表扫描。如果表的读操作远远多于写操作且不需要数据库事务的支持,那么MyIASM也是很好的选

择。

两种引擎的选择

大尺寸的数据集趋向于选择InnoDB引擎,因为它支持事务处理和故障恢复。数据库的大小决定了故障恢复的时间长短,InnoDB可以利用事务日志

进行数据恢复,这会比较快。主键查询在InnoDB引擎下也会相当快,不过需要注意的是如果主键太长也会导致性能问题,关于这个问题我会在下文中讲到。大

批的INSERT语句(在每个INSERT语句中写入多行,批量插入)在MyISAM下会快一些,但是UPDATE语句在InnoDB下则会更快一些,尤

其是在并发量大的时候。

Index——索引

索引(Index)是帮助MySQL高效获取数据的数据结构。MyIASM和Innodb都使用了树这种数据结构做为索引,关于树我也曾经写过一篇文章树是一种伟大的数据结构,只是自己的理解,有兴趣的朋友可以去阅读。下面我接着讲这两种引擎使用的索引结构,讲到这里,首先应该谈一下B-Tree和B+Tree。

B-Tree和B+Tree

B+Tree是B-Tree的变种,那么我就先讲B-Tree吧,相信大家都知道红黑树,这是我前段时间学《算法》一书时,实现的一颗红黑树,大家

可以参考。其实红黑树类似2,3-查找树,这种树既有2叉结点又有3叉结点。B-Tree也与之类似,它的每个结点做多可以有d个分支(叉),d称为B-

Tree的度,如下图所示,它的每个结点可以有4个元素,5个分支,于是它的度为5。B-Tree中的元素是有序的,比如图中元素7左边的指针指向的结点

中的元素都小于7,而元素7和16之间的指针指向的结点中的元素都处于7和16之间,正是满足这样的关系,才能高效的查找:首先从根节点进行二分查找,找

到就返回对应的值,否则就进入相应的区间结点递归的查找,直到找到对应的元素或找到null指针,找到null指针则表示查找失败。这个查找是十分高效

的,其时间复杂度为O(logN)(以d为底,当d很大时,树的高度就很低),因为每次检索最多只需要检索树高h个结点。

接下来就该讲B+Tree了,它是B-Tree的变种,如下面两张图所示:

vcHLx/i85LLp0a/Qp8LKoaM8L3A+DQo8aDMgaWQ9"myisam引擎的索引结构"MyISAM引擎的索引结构

MyISAM引擎的索引结构为B+Tree,其中B+Tree的数据域存储的内容为实际数据的地址,也就是说它的索引和实际的数据是分开的,只不过是用索引指向了实际的数据,这种索引就是所谓的非聚集索引。

Innodb引擎的索引结构

MyISAM引擎的索引结构同样也是B+Tree,但是Innodb的索引文件本身就是数据文件,即B+Tree的数据域存储的就是实际的数据,这种索引就是聚集索引。这个索引的key就是数据表的主键,因此InnoDB表数据文件本身就是主索引。

因为InnoDB的数据文件本身要按主键聚集,所以InnoDB要求表必须有主键(MyISAM可以没有),如果没有显式指定,则MySQL系统会自动选择一个可以唯一标识数据记录的列作为主键,如果不存在这种列,则MySQL自动为InnoDB表生成一个隐含字段作为主键,这个字段长度为6个字节,类型为长整形。

并且和MyISAM不同,InnoDB的辅助索引数据域存储的也是相应记录主键的值而不是地址,所以当以辅助索引查找时,会先根据辅助索引找到主

键,再根据主键索引找到实际的数据。所以Innodb不建议使用过长的主键,否则会使辅助索引变得过大。建议使用自增的字段作为主键,这样B+Tree的

每一个结点都会被顺序的填满,而不会频繁的分裂调整,会有效的提升插入数据的效率。

如何利用MySQL命令创建,查看,重建和删除索引

第一步,创建数据库表t_tree_info,命令如下:

create table t_tree_info(

id int(8),

tno int(4),

tname varchar(20),

tdesc varchar(100)

);

如下图所示:

第二步,向表里插入3条数据,插入后查看表记录,如下图所示:

第三步,创建数据库索引tree_name,命令如下:

create index tree_name on t_tree_info (tname(20));

如下图所示:

第四步,查看数据库表索引,利用show命令

show index from t_tree_info;

如下图所示:

第五步,重建索引,利用repari命令

repair table t_tree_info quick;

如下图所示:

第六步,索引创建好了,在不使用该索引时,可以删除

drop index tree_name on t_tree_info;

如下图所示:

MYSQL数据库索引类型都有哪些

在满足语句需求的情况下,尽量少的访问资源是数据库设计的重要原则,这和执行的 SQL 有直接的关系,索引问题又是 SQL 问题中出现频率最高的,常见的索引问题包括:无索引(失效)、隐式转换。

1. SQL 执行流程看一个问题,在下面这个表 T 中,如果我要执行 select * from T where k between 3 and 5; 需要执行几次树的搜索操作,会扫描多少行?mysql create table T (    - ID int primary key,    - k int NOT NULL DEFAULT 0,    - s varchar(16) NOT NULL DEFAULT '',    - index k(k))    - engine=InnoDB;mysql insert into T values(100,1, 'aa'),(200,2,'bb'),      (300,3,'cc'),(500,5,'ee'),(600,6,'ff'),(700,7,'gg');

这分别是 ID 字段索引树、k 字段索引树。

这条 SQL 语句的执行流程:

1. 在 k 索引树上找到 k=3,获得 ID=3002. 回表到 ID 索引树查找 ID=300 的记录,对应 R33. 在 k 索引树找到下一个值 k=5,ID=5004. 再回到 ID 索引树找到对应 ID=500 的 R4

5. 在 k 索引树去下一个值 k=6,不符合条件,循环结束

这个过程读取了 k 索引树的三条记录,回表了两次。因为查询结果所需要的数据只在主键索引上有,所以必须得回表。所以,我们该如何通过优化索引,来避免回表呢?

2. 常见索引优化2.1 覆盖索引覆盖索引,换言之就是索引要覆盖我们的查询请求,无需回表。

如果执行的语句是 select ID from T wherek between 3 and 5;,这样的话因为 ID 的值在 k 索引树上,就不需要回表了。

覆盖索引可以减少树的搜索次数,显著提升查询性能,是常用的性能优化手段。

但是,维护索引是有代价的,所以在建立冗余索引来支持覆盖索引时要权衡利弊。

2.2 最左前缀原则

B+ 树的数据项是复合的数据结构,比如 (name,sex,age) 的时候,B+ 树是按照从左到右的顺序来建立搜索树的,当 (张三,F,26) 这样的数据来检索的时候,B+ 树会优先比较 name 来确定下一步的检索方向,如果 name 相同再依次比较 sex 和 age,最后得到检索的数据。

# 有这样一个表 P

mysql create table P (id int primary key, name varchar(10) not null, sex varchar(1), age int, index tl(name,sex,age)) engine=IInnoDB;

mysql insert into P values(1,'张三','F',26),(2,'张三','M',27),(3,'李四','F',28),(4,'乌兹','F',22),(5,'张三','M',21),(6,'王五','M',28);

# 下面的语句结果相同

mysql select * from P where name='张三' and sex='F';     ## A1

mysql select * from P where sex='F' and age=26;         ## A2

# explain 看一下

mysql explain select * from P where name='张三' and sex='F';

+----+-------------+-------+------------+------+---------------+------+---------+-------------+------+----------+-------------+

| id | select_type | table | partitions | type | possible_keys | key  | key_len | ref         | rows | filtered | Extra       |

+----+-------------+-------+------------+------+---------------+------+---------+-------------+------+----------+-------------+

|  1 | SIMPLE      | P     | NULL       | ref  | tl            | tl   | 38      | const,const |    1 |   100.00 | Using index |

+----+-------------+-------+------------+------+---------------+------+---------+-------------+------+----------+-------------+

mysql explain select * from P where sex='F' and age=26;

+----+-------------+-------+------------+-------+---------------+------+---------+------+------+----------+--------------------------+

| id | select_type | table | partitions | type  | possible_keys | key  | key_len | ref  | rows | filtered | Extra                    |

+----+-------------+-------+------------+-------+---------------+------+---------+------+------+----------+--------------------------+

|  1 | SIMPLE      | P     | NULL       | index | NULL          | tl   | 43      | NULL |    6 |    16.67 | Using where; Using index |

+----+-------------+-------+------------+-------+---------------+------+---------+------+------+----------+--------------------------+

可以清楚的看到,A1 使用 tl 索引,A2 进行了全表扫描,虽然 A2 的两个条件都在 tl 索引中出现,但是没有使用到 name 列,不符合最左前缀原则,无法使用索引。所以在建立联合索引的时候,如何安排索引内的字段排序是关键。评估标准是索引的复用能力,因为支持最左前缀,所以当建立(a,b)这个联合索引之后,就不需要给 a 单独建立索引。原则上,如果通过调整顺序,可以少维护一个索引,那么这个顺序往往就是需要优先考虑采用的。上面这个例子中,如果查询条件里只有 b,就是没法利用(a,b)这个联合索引的,这时候就不得不维护另一个索引,也就是说要同时维护(a,b)、(b)两个索引。这样的话,就需要考虑空间占用了,比如,name 和 age 的联合索引,name 字段比 age 字段占用空间大,所以创建(name,age)联合索引和(age)索引占用空间是要小于(age,name)、(name)索引的。

2.3 索引下推

以人员表的联合索引(name, age)为例。如果现在有一个需求:检索出表中“名字第一个字是张,而且年龄是26岁的所有男性”。那么,SQL 语句是这么写的mysql select * from tuser where name like '张%' and age=26 and sex=M;

通过最左前缀索引规则,会找到 ID1,然后需要判断其他条件是否满足在 MySQL 5.6 之前,只能从 ID1 开始一个个回表。到主键索引上找出数据行,再对比字段值。而 MySQL 5.6 引入的索引下推优化(index condition pushdown),可以在索引遍历过程中,对索引中包含的字段先做判断,直接过滤掉不满足条件的记录,减少回表次数。这样,减少了回表次数和之后再次过滤的工作量,明显提高检索速度。

2.4 隐式类型转化

隐式类型转化主要原因是,表结构中指定的数据类型与传入的数据类型不同,导致索引无法使用。所以有两种方案:

修改表结构,修改字段数据类型。

修改应用,将应用中传入的字符类型改为与表结构相同类型。

3. 为什么会选错索引3.1 优化器选择索引是优化器的工作,其目的是找到一个最优的执行方案,用最小的代价去执行语句。在数据库中,扫描行数是影响执行代价的因素之一。扫描的行数越少,意味着访问磁盘数据的次数越少,消耗的 CPU 资源越少。当然,扫描行数并不是唯一的判断标准,优化器还会结合是否使用临时表、是否排序等因素进行综合判断。

3.2 扫描行数

MySQL 在真正开始执行语句之前,并不能精确的知道满足这个条件的记录有多少条,只能通过索引的区分度来判断。显然,一个索引上不同的值越多,索引的区分度就越好,而一个索引上不同值的个数我们称为“基数”,也就是说,这个基数越大,索引的区分度越好。# 通过 show index 方法,查看索引的基数mysql show index from t;+-------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment |+-------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+| t     |          0 | PRIMARY  |            1 | id          | A         |       95636 |     NULL | NULL   |      | BTREE      |         |               || t     |          1 | a        |            1 | a           | A         |       96436 |     NULL | NULL   | YES  | BTREE      |         |               || t     |          1 | b        |            1 | b           | A         |       96436 |     NULL | NULL   | YES  | BTREE      |         |               |+-------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+

MySQL 使用采样统计方法来估算基数:采样统计的时候,InnoDB 默认会选择 N 个数据页,统计这些页面上的不同值,得到一个平均值,然后乘以这个索引的页面数,就得到了这个索引的基数。而数据表是会持续更新的,索引统计信息也不会固定不变。所以,当变更的数据行数超过 1/M 的时候,会自动触发重新做一次索引统计。

在 MySQL 中,有两种存储索引统计的方式,可以通过设置参数 innodb_stats_persistent 的值来选择:

on 表示统计信息会持久化存储。默认 N = 20,M = 10。

off 表示统计信息只存储在内存中。默认 N = 8,M = 16。

由于是采样统计,所以不管 N 是 20 还是 8,这个基数都很容易不准确。所以,冤有头债有主,MySQL 选错索引,还得归咎到没能准确地判断出扫描行数。

可以用 analyze table 来重新统计索引信息,进行修正。

ANALYZE [LOCAL | NO_WRITE_TO_BINLOG] TABLE tbl_name [, tbl_name] ...

3.3 索引选择异常和处理1. 采用 force index 强行选择一个索引。2. 可以考虑修改语句,引导 MySQL 使用我们期望的索引。3. 有些场景下,可以新建一个更合适的索引,来提供给优化器做选择,或删掉误用的索引。

怎么查看表的索引mysql

查看索引的语法格式如下:

SHOW INDEX FROM 表名 [ FROM 数据库名]

语法说明如下:

表名:指定需要查看索引的数据表名。

数据库名:指定需要查看索引的数据表所在的数据库,可省略。比如,SHOW INDEX FROM student FROM test; 语句表示查看 test 数据库中 student 数据表的索引。

示例

使用 SHOW INDEX 语句查看《MySQL创建索引》一节中 tb_stu_info2 数据表的索引信息,SQL 语句和运行结果如下所示。

mysql SHOW INDEX FROM tb_stu_info2G

1. row

Table: tb_stu_info2

Non_unique: 0

Key_name: height

Seq_in_index: 1

Column_name: height

Collation: A

Cardinality: 0

Sub_part: NULL

Packed: NULL

Null: YES

Index_type: BTREE

Comment:

Index_comment:

1 row in set (0.03 sec)

其中各主要参数说明如下:

参数 说明

Table 表示创建索引的数据表名,这里是 tb_stu_info2 数据表。

Non_unique 表示该索引是否是唯一索引。若不是唯一索引,则该列的值为 1;若是唯一索引,则该列的值为 0。

Key_name 表示索引的名称。

Seq_in_index 表示该列在索引中的位置,如果索引是单列的,则该列的值为 1;如果索引是组合索引,则该列的值为每列在索引定义中的顺序。

Column_name 表示定义索引的列字段。

Collation 表示列以何种顺序存储在索引中。在 MySQL 中,升序显示值“A”(升序),若显示为 NULL,则表示无分类。

Cardinality 索引中唯一值数目的估计值。基数根据被存储为整数的统计数据计数,所以即使对于小型表,该值也没有必要是精确的。基数越大,当进行联合时,MySQL 使用该索引的机会就越大。

Sub_part 表示列中被编入索引的字符的数量。若列只是部分被编入索引,则该列的值为被编入索引的字符的数目;若整列被编入索引,则该列的值为 NULL。

Packed 指示关键字如何被压缩。若没有被压缩,值为 NULL。

Null 用于显示索引列中是否包含 NULL。若列含有 NULL,该列的值为 YES。若没有,则该列的值为 NO。

Index_type 显示索引使用的类型和方法(BTREE、FULLTEXT、HASH、RTREE)。

Comment 显示评注。

mysql 表空间及索引的查看方法

1.查看索引

(1)单位是GB

SELECT

CONCAT(ROUND(SUM(index_length)/(1024*1024*1024),

2),

'

GB')

AS

'Total

Index

Size'

FROM

information_schema.TABLES

WHERE

table_schema

LIKE

'database';

+------------------+

|

Total

Index

Size

|

+------------------+

|

1.70

GB

|

+------------------+

(2)单位是MB

SELECT

CONCAT(ROUND(SUM(index_length)/(1024*1024),

2),

'

MB')

AS

'Total

Index

Size'

FROM

information_schema.TABLES

WHERE

table_schema

LIKE

'database';

其中“database”为你所要查看的数据库

2.查看表空间

SELECT

CONCAT(ROUND(SUM(data_length)/(1024*1024*1024),

2),

'

GB')

AS

'Total

Data

Size'

FROM

information_schema.TABLES

WHERE

table_schema

LIKE

'database';

+-----------------+

|

Total

Data

Size

|

+-----------------+

|

3.01

GB

|

+-----------------+

3.查看数据库中所有表的信息

SELECT

CONCAT(table_schema,'.',table_name)

AS

'Table

Name',

CONCAT(ROUND(table_rows/1000000,2),'M')

AS

'Number

of

Rows',

CONCAT(ROUND(data_length/(1024*1024*1024),2),'G')

AS

'Data

Size',

CONCAT(ROUND(index_length/(1024*1024*1024),2),'G')

AS

'Index

Size'

,

CONCAT(ROUND((data_length+index_length)/(1024*1024*1024),2),'G')

AS'Total'FROM

information_schema.TABLES

WHERE

table_schema

LIKE

'database';

查看mysql数据库索引的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于mysql 索引查询、查看mysql数据库索引的信息别忘了在本站进行查找喔。

查看mysql数据库索引 查看mysql数据库所有的索引mysql数据库的索引mysql数据库索引面试题mysql数据库索引优化mysql数据库添加索引mysql数据库索引失效mysql数据库索引结构mysql数据库索引有哪几种mysql数据库索引怎么建立mysql数据库创建索引语句
扫码二维码